
Journal of Computational Physics 181, 186–221 (2002)
doi:10.1006/jcph.2002.7118

Nodal High-Order Methods
on Unstructured Grids

I. Time-Domain Solution of Maxwell’s Equations
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We present a convergent high-order accurate scheme for the solution of linear con-
servation laws in geometrically complex domains. As our main example we include
a detailed development and analysis of a scheme for the time-domain solution of
Maxwell’s equations in a three-dimensional domain. The fully unstructured spatial
discretization is made possible by the use of a high-order nodal basis, employing
multivariate Lagrange polynomials defined on the triangles and tetrahedra, while the
equations themselves are satisfied in a discontinuous Galerkin form with the bound-
ary conditions being enforced weakly through a penalty term. Accuracy, stability,
and convergence of the semidiscrete approximation to Maxwell’s equations is es-
tablished rigorously and bounds on the growth of the global divergence error are
provided. Concerns related to efficient implementations are discussed in detail. This
sets the stage for the presentation of examples, verifying the theoretical results, and
illustrating the versatility, flexibility, and robustness when solving two- and three-
dimensional benchmark problems in computational electromagnetics. Pure scattering
as well as penetration is discussed and high parallel performance of the scheme is
demonstrated. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The ability to accurately and reliably model wave-dominated problems continues to be
an essential technology for the development and analysis of emerging technologies such as
stealth technology, noise reduction, subsurface exploration, and optical communication to
name a few. These are all problems characterized by large size in terms of a characteristic
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wavelength, geometrical complexity, often being composed of a heterogeneous collection
of different materials, and all requiring a high-fidelity solution with a rigorous control of
the numerical errors. Even for linear problems, such requirements force one to look beyond
standard computational techniques and seek new computational frameworks to enable the
accurate, efficient, and robust modeling of wave phenomena over long times in geometrically
complex domains.

The requirement that one can accurately propagate waves over many periods of time
suggests that high-order methods should be considered [1]. On the other hand, the use of
such methods is traditionally in conflict with the need for significant geometric flexibility
by being restricted to fairly simple geometries. The standard approach to overcome this
restriction is to introduce a multielement formulation in which the basic building block is
parametrically mapped cubes in the spirit of finite element methods. This approach has been
very successfully applied to the solution of problems in fluid mechanics [2–4], gasdynamics
[5–10], and electromagnetics [11–15].

When applicable, such techniques are powerful, although they do suffer from the need
to tile the computational domain using only hexahedral elements. Unfortunately, auto-
mated grid generation using only such elements for general three-dimensional computa-
tional problems of a realistic complexity remains a nontrivial task and is typically rather
time-consuming. Furthermore, spatial adaptation, while certainly possible, is quite a chal-
lenge with a method based solely on hexahedral elements. In contrast to this, automated grid
generation employing a fully unstructured grid based on tetrahedral elements is significantly
more mature, due mainly to extensive developments within the finite-element community.
Spatial grid adaptation is also considerably easier in such a formulation.

It is with these issues in mind that we present a computational framework that combines
the strengths of a high-order formulation with the flexibility of a fully unstructured grid
based on tetrahedral elements. The formulation relies on the resolution of two central issues.
On one hand we shall discuss how to represent functions defined on triangles and tetrahedra
to high accuracy and how this translates into the basic operations needed to solve partial
differential equations. On the other hand we need to address the question of how to use such
a high-order representation to formulate a convergent scheme suitable for solving systems
of linear hyperbolic problems.

Much in the spirit of the original work on spectral element methods [2, 3] we focus on
the formulation of efficient and flexible unstructured grid methods using nodal elements.
This is in contrast to past attempts to develop high-order unstructured grid methods, which
mainly have focused on the use of high-order modal expansions, e.g., [16–21]. In these
works, modal expansions of almost orthogonal polynomials defined on the simplex are
utilized while a straightforward monomial basis is used in [22] (see also [23] and references
therein) much in the tradition of classical high-order finite element methods for elliptic
problems [24, 25].

In contrast to the classical spectral element approach, however, we do not seek a glob-
ally continuous solution but rather require that the equations be satisfied in a discontinuous
Galerkin/penalty fashion. This is related to the classic discontinuous Galerkin finite element
method [23], although the present approach represents a more general formulation, con-
taining the classic discontinuous Galerkin formulation as a special case. Such more general
techniques are known in the context of spectral methods as penalty methods [26], and re-
cently stable formulations on general one-dimensional [27], triangular [28], and tetrahedral
domains [29] have been discussed. These methods all share the advantage of decoupling
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all the elements, hence enabling high parallel efficiency, by allowing for discontinuous
solutions between elements in a natural way.

While the majority of what we shall discuss is of a general nature we discuss in detail
the development and analysis of a high-order accurate unstructured grid method for the
solution of Maxwell’s equations in the time domain. This is not only a challenging problem
but also a problem of significant contemporary interest due to emerging technologies such
as broad-band target illumination and penetration, advanced materials, and diffraction-
based modern optics. Furthermore, Maxwell’s equations serve as an excellent example
of numerous other linear hyperbolic systems of equations, e.g., elasticity, acoustics, and
solid mechanics, for which the proposed framework can be adapted with little effort. In
part II of this work [30] we shall discuss generalizations of the proposed computational
framework to allow the accurate and robust solution of systems of nonlinear conservation
laws.

What remains of the paper is organized as follows. In Section 2 we set the stage by briefly
describing Maxwell’s equations and the scattered field formulations, as well as boundary
conditions at material interfaces and metallic boundaries. The first step in the construction
of the high-order unstructured grid scheme is taken in Section 3 where we introduce a
Lagrangian high-order basis on a general curvilinear simplex. In the Appendix we include
a discussion of techniques that allow an efficient and accurate implementation of the basic
operations. By providing the basic building block for the spatial approximation, this sets
the stage for the formulation of a high-order convergent scheme for solving Maxwell’s
equations as discussed in Section 4. The convergence of the scheme is established in the
classic way through consistency and stability. A stronger and optimal result is furthermore
established by showing the scheme to be error-bounded, guaranteeing at most linear growth
in time and control over the growth rate. This result also enables bounds on the growth
of the divergence error. Verification and performance of the complete scheme is the topic
of Section 5 where we present a number of simple tests to verify the theoretical results
and illustrate the efficiency, versatility, and robustness of the computational framework
for the solution of two- and three-dimensional scattering and penetration problems. We
shall also briefly discuss measures taken in the implementation of the scheme to ensure
efficient execution on large-scale contemporary parallel computing platforms. In Section 6
we conclude by offering a few remarks and guidelines for future work.

2. THE PHYSICAL SETTING AND MAXWELL’S EQUATIONS

We shall concern ourselves with the time-domain solution of Maxwell’s equations in
normalized differential form

∂D
∂t

= ∇ × H + J,
∂B
∂t

= −∇ × E, (1)

∇ · D = ρ, ∇ · B = 0, (2)

within the general three-dimensional domain, �, with the charge distribution, ρ(x, t).
The electric field, E(x, t), and the electric flux density, D(x, t), as well as the magnetic
field, H(x, t), and the magnetic flux density, B(x, t), are related through the constitutive
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relations

D = ε
¯̄ r

E, B = µ
¯̄ r

H.

The normalized relative permittivity tensor, ε
¯̄ r

, as well as the normalized relative perme-
ability tensor, µ

¯̄ r
, are in general anisotropic and may depend on space and time as well as

the strength of the fields themselves. The current, J, is typically assumed to be related to
the electric field, E, through Ohm’s law, J = σE, where σ measures the finite conductivity.

This normalized version of Maxwell’s equations is recovered by introducing the normal-
ized quantities

x = x̃

L̃
, t = t̃

L̃/c̃0
,

where L̃ is a reference length, and c̃0 = (ε̃0µ̃0)
−1/2 represents the dimensional vacuum

speed of light. The fields themselves are normalized as

E = Z̃−1
0 Ẽ

H̃ 0
, H = H̃

H̃ 0
, J = J̃L̃

H̃ 0
,

where Z̃0 = √
µ̃0/ε̃0 refers to the dimensional free space intrinsic impedance, and H̃ 0 is a

dimensional reference magnetic field strength.
For simplicity, we restrict the attention to materials that can be assumed isotropic, linear,

and time-invariant, with constitutive relations of the form

D = εrE, B = µrH.

Here εr(x) and µr(x) refer to the relative permittivity and permeability, respectively, of the
materials.

Taking the divergence of Eq. (1) and applying Eq. (2) in combination with Gauss’s law for
charge conservation immediately confirms that if the initial conditions satisfy Eq. (2), and
the fields are evolved according to Maxwell’s equations, Eq. (1), the solution will satisfy
Eq. (2) at all times. Hence, one can view Eq. (2) as a consistency condition on the initial
conditions and limit the solution to the time-dependent part of Maxwell’s equations, Eq. (1).

With this normalization Eq. (1) takes the nondimensional form

εr
∂E
∂t

= ∇ × H + J, µr
∂H
∂t

= −∇ × E, (3)

which is the general form of the equations we consider.
To solve Maxwell’s equations in the vicinity of boundaries, penetrable or not, we shall

need boundary conditions relating the field components on either side of the boundary.
Assuming that a normal unit vector, n̂, to the boundary is given, the boundary conditions
take the form

n̂ × (E1 − E2) = 0, n̂ × (H1 − H2) = 0, (4)

assuming that the materials have finite conductivity; i.e., the tangential components are
continuous regardless of the materials.
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For the important special case of a perfect conductor, the conditions become

n̂ × E = 0, n̂ · B = 0, (5)

as the perfect conductor supports surface charges and currents while the fields are unable
to penetrate into the body.

2.1. The Scattered Field Formulation

For problems involving linear materials it is often advantageous to exploit the linearity
of Maxwell’s equations and solve for the scattered field, (Es, Hs), rather than for the total
field, (E, H). These are trivially related as

E = Ei + Es, H = Hi + Hs,

where (Ei, Hi) represents the incident field, illuminating the scattering object. Assuming that
(Ei, Hi) represents a particular solution to Maxwell’s equations, one recovers the scattered
field formulation

εr
∂Es

∂t
= ∇ × Hs + σEs − (εr − εi

r

)∂Ei

∂t
+ (σ − σ i )Ei, (6)

µr
∂Hs

∂t
= −∇ × Es − (µr − µi

r

)∂Hi

∂t
, (7)

where εi
r(x), µi

r(x), and σ i(x) refer to the relative permittivity, permeability, and conductivity
of the media in which the incident field represents a solution to Maxwell’s equations. To
simplify matters we have assumed Ohm’s law, J = σE. We note that the important special
case of a vacuum field illuminating the scattering object is obtained by using εi

r = µi
r =

1, σ i = 0, and using a free space solution in the forcing function.
In this formulation, the boundary conditions along a dielectric interface are

n̂ × (Es
1 − Es

2

) = 0, n̂ × (Hs
1 − Hs

2

) = 0, (8)

for the tangential components, while the conditions on the scattered field components
become

n̂ × Es = −n̂ × Ei, n̂ · Bs = −µi
rn̂ · Hi, (9)

in the case of a perfectly conducting boundary.

3. THE NODAL ELEMENT

We shall seek approximate solutions to Maxwell’s equations in a general domain, �,
possibly containing a heterogeneous collection of scattering and penetrable bodies. To
facilitate the required geometric flexibility, we represent the computational domain as the
union of K nonoverlapping body-conforming d-simplices, D.

While this multielement formulation is essential to ensure geometric flexibility, it also
introduces new complications, the resolution of which are at the heart of the construction



NODAL HIGH-ORDER METHODS ON UNSTRUCTURED GRIDS I 191

of the scheme. In particular, the use of simplices requires an understanding of how to
construct high-order polynomial representations of solutions and basic operations on such
elements. These are issues we shall deal with in the following. For continuity we postpone the
important discussion of practical techniques for the efficient and accurate implementation
of the basic operations to the Appendix.

3.1. The Curvilinear d-Simplex

We start by assuming that the computational domain, �, is decomposed into curvilinear
d-simplices, D ⊂ Rd , as illustrated in Fig. 1 by a 3-simplex, a tetrahedron. For generality
we shall limit much of the discussions to the three-dimensional case and regard the two-
dimensional problem as a special case.

While we shall not eventually require that the faces of the tetrahedron are planar, such an
assumption will, as we shall see shortly, significantly simplify matters in terms of analysis
as well as implementation. It should also be noted that for most computational problems,
the vast majority of the elements will have planar faces; i.e., it remains the single most
important special case.

Let us introduce the standard tetrahedron, I ⊂ R3, given by the vertices

vI =

−1

−1
−1


, vII =


 1

−1
−1


, vIII =


−1

1
−1


, vIV =


−1

−1
1


,

as illustrated in Fig. 1 with the corresponding vertices in D termed v1–v4. In general we
shall name the coordinates in the physical simplex, D, as x = (x, y, z) while the coordinates,
ξ ∈ I, are referred to as ξ = (ξ, η, ζ ).

To relate operations on D to those on I we construct a smooth and invertible mapping,
�: I → D, that uniquely relates the two simplices. In the case of a general curvilinear
mapping, this can be constructed directly by the use of linear transfinite blending func-
tions. Although lengthy, expressions of these mappings are straightforwardly arrived at by

FIG. 1. Mapping between the curvilinear tetrahedral, D, and the standard tetrahedral, I, including the num-
bering and notation employed in the text.
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blending parameterized versions of faces, edges, and the vertex coordinates. For a detailed
account of this we refer to [21].

Once the mapping, �(ξ), has been computed we utilize it to compute the curvilinear
metric of the transformation by

∂x
∂ξ

∂ξ

∂x
= ∂�(ξ)

∂ξ

∂ξ

∂x
=

xξ xη xζ

yξ yη yζ

zξ zη zζ




ξx ξy ξz

ηx ηy ζz

ζx ζy ζz


 =


1 0 0

0 1 0
0 0 1


.

This enables the computation of central operations such as gradients of scalar fields and
divergence of vector fields by using standard curvilinear representations, see, e.g., [21, 29].

The metric also supplies outward pointing normal vectors at the four faces of D as

na = ∇ξ + ∇η + ∇ζ,

nb = −∇ξ, nc = −∇η, nd = −∇ζ.

It is worthwhile recognizing that for the special case of the mapping between straightsided
tetrahedra, the transformation Jacobian, J , and the full metric, ∇ξ , ∇η, and ∇ζ , are constant;
i.e., every two straightsided tetrahedra are connected through a simple linear transformation
[21, 29]. As we discuss in detail in the Appendix, this observation can be exploited to
simplify the implementation of the general unstructured scheme by introducing template
operators.

Let us finally define a number of different inner products on the curvilinear simplex, D.
Consider the two smooth functions, f [D] ∈ C[D] and g[D] ∈ C[D] for which f (x): D → R
and g(x): D → R. The inner product, the associated L2-norm and the inner product over
the surface of D are defined as

( f, g)D =
∫

D
f (x)g(x) dx, ( f, f )D = ‖ f ‖2

D, ( f, g)δD =
∮

δD
f (x)g(x) dx.

These local inner products and norms form the basis for the corresponding global broken
measures as

( f, g)� =
∑

k

( f, g)Dk , ( f, f )� =
∑

k

‖ f ‖2
Dk = ‖ f ‖2

�,

( f, g)δ� =
∑

k

∮
δDk

f (x)g(x) dx.

3.2. A Multivariate Polynomial Basis on the d-Simplex

With the curvilinear framework in place we can now focus the attention on the develop-
ment of a high-order representation of a function defined on the elemental element, I, rather
than a general D.

Contrary to the approach taken in [17, 21], where a purely modal approximation is utilized,
we shall use a purely nodal scheme. Hence, we assume that the unknown solutions, q(ξ, t),
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can be well approximated as

qN (ξ, t) =
N∑

j=0

q(ξ j , t)L j (ξ),

where L j (ξ) is the genuine three-dimensional multivariate Lagrange interpolation polyno-
mial, L j (ξ) ∈ P3

n , where

P3
n = span{ξ iη jζ k; i, j, k ≥ 0; i + j + k ≤ n},

based on the N 3
n = N + 1 nodal points, ξ j , given in the interior as well as on the boundary

of I. It is easy to see that the minimum number of nodal points that will allow this basis to
be complete is

N 3
n = 1

6
(n + 1)(n + 2)(n + 3),

where n signifies the maximum order of the polynomial.
The crucial choice of a nodal set, well suited for Lagrange interpolation within the

tetrahedron, is an issue that has received some attention lately with examples of suitable
nodal sets given in [31] and [29]. These both present fully unstructured nodal sets with a
large degree of symmetry, exactly N 3

n nodes within the tetrahedron and a very well-behaved
Lagrange polynomial as measured through the growth of the associated Lebesque constant.
Furthermore, both nodal sets include the four vertices in I and have exactly 1

2 (n + 1)(n + 2)

nodes at each of the four faces. This latter property is important as it ensures that a complete
two-dimensional polynomial is supported by the nodes on each face. We use the nodal set
from [29] in what remains as the nodes on which the Lagrange interpolation polynomials
are based. These nodal sets are given for n up to 10, corresponding to N 3

10 = 286 nodal
points within each tetrahedron and 66 nodal points at each face.

Once we have identified a proper nodal set, we can proceed with the formulation of the
interpolation

I3
N f (ξ j ) = f (ξ j ). (10)

For the actual construction of the interpolation polynomials, let us introduce the complete
polynomial basis, pi (ξ) ∈ P3

n , and express the interpolation property, Eq. (10), as

∀i : f (ξi ) =
N∑

j=0

f̂ j p j (ξi ) ⇒ Vf̂ = f , (11)

where f̂ = [ f̂ 0, . . , f̂ N ]T is the vector of expansion coefficients, f = [ f (ξ0), . . , f (ξN )]T is
the grid vector, and Vi j = p j (ξi ) is the multidimensional Vandermonde matrix. Clearly,
for the interpolation to exist V must be nonsingular. Under the assumption of existence and
uniqueness of the interpolation polynomial, we can express Eq. (11) as

∀i : f (ξi ) =
N∑

j=0

f (ξi )L j (ξi ). (12)
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Combining Eqs. (11) and (12) implies that

VTL = p, (13)

where L = [L0(ξ), . . ,L N (ξ)]T and p = [p0(ξ), .. ,pN (ξ)]T. This enables the evaluation of
I3

N f (ξ) anywhere in I by computing L j (ξ) and using Eq. (12).
Once the Lagrange polynomial has been computed, all other operations follow imme-

diately, although care must be exercised to ensure accuracy and efficiency. The details of
these practical, yet important, details are found in the Appendix.

4. A CONVERGENT SCHEME FOR MAXWELL’S EQUATIONS

Having realized high-order formulations of basic operations on the nodal tetrahedron, we
are now in a position to develop a scheme suitable for solving linear systems of hyperbolic
problems in complex geometries, exemplified by a scheme for solving Maxwell’s equations.

Let us express Maxwell’s equations, Eq. (3), in conservation form

Q
∂q
∂t

+ ∇ · F(q) = S, (14)

where the material matrix, Q(x), the state vector, q, and the flux, F(q), are

Q(x) =
[
εr 0
0 µr

]
, q =

[
E
H

]
, Fi (q) =

[−ei × H

ei × E

]
,

with F(q) = [F1(q), F2(q), F3(q)]T. Here ei signifies the three Cartesian unit vectors and
S = [SE , SH ]T represents body forces, e.g., currents, and terms introduced by the scattered
field formulation, Eqs. (6) and (7).

4.1. Central Elements of the Scheme

Let us begin by using the nodal basis discussed in the previous section and assume that
the statevector, q, can be represented as

qN (x, t) =
N∑

j=0

q(x j , t)L j (x) =
N∑

j=0

q j (t)L j (x),

within each general curvilinear element, Dk , with x j = x(ξ j ) through the curvilinear map-
ping discussed in Section 3.1.

We shall consider schemes in which we require Eq. (14) to be satisfied elementwise in
the following way:

∫
D

(
Q

∂qN

∂t
+ ∇ · FN − SN

)
φi (x) dx =

∮
δD

ψi (x)n̂ · (FN − F∗
N ) dx. (15)

Here φi and ψi signify sequences of N test functions while n̂ is an outward-pointing normal
vector and F∗

N is a numerical flux, the specification of which we return to shortly.
It is worthwhile emphasizing a few characteristics of this formulation, Eq. (15). We see

that consistency of the scheme depends solely on the consistency of the inner scheme and the
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numerical flux. One should also observe that boundary/interface conditions are not imposed
exactly but rather weakly through the penalizing surface integral. Finally we emphasize
that in a multielement context, the formulation is inherently discontinuous, enforcing the
interface conditions weakly through the penalizing term and giving rise to a highly parallel
formulation.

In choosing φi , ψi , and the numerical flux, F∗
N , one has a tremendous amount of free-

dom in designing schemes suitable for solving differential equations. In [10] we proposed
stable spectral collocation methods with weakly imposed boundary/interface conditions for
solving the advection–diffusion equation and the compressible Navier–Stokes equations
by choosing φi (x) = ψi (x) = δ(x − xi ). Alternative choices, likewise leading to stable
schemes for solving linear conservation laws, were discussed in [28, 29]. There we consid-
ered mixed Galerkin–collocation formulations by choosing φi (x) = Li (x), as in a classic
Galerkin formulation, but using ψi (x) = δ(x − xi ) to impose the boundary/interface con-
ditions. In all cases, the numerical flux, F∗

N , was chosen to reflect upwinding, although any
consistent numerical flux could be used, see, e.g., [23] for discussion of alternatives.

Here, we require that the equations, Eq. (3), be satisfied as

∫
D

(
Q

∂qN

∂t
+ ∇ · FN − SN

)
Li (x) dx =

∮
δD

τ(x)Li (x)n̂ · (FN − F∗
N ) dx; (16)

i.e., in the language of the general formulation in Eq. (15) we have φi (x) = Li (x) and
ψi (x) = τ Li (x) where τ(x) is a free parameter to be specified later.

It is worth noting that the classical discontinuous Galerkin formulation [23] is recovered
from Eq. (16) by a simple integration by parts; i.e., it is a special case of the scheme in
Eq. (15).

While there are many possibilities for the numerical flux, F∗
N , the linearity of the problem

suggests that upwinding is a natural solution. To understand the form of this, it is helpful
to recall that

n̂ · FN =
[−n̂ × HN

n̂ × EN

]
,

i.e., the normal component of the fluxes represents nothing else than the tangential field
components and the purpose of the right-hand side in Eq. (16) is to weakly enforce continuity
of the tangential field components at the face of the elements. This yields the explicit form
of the upwinded penalizing boundary term as [32]

n̂ · (FN − F∗
N ) =

{
Z̄−1n̂ × (Z+[HN ] − n̂ × [EN ])

Ȳ −1n̂ × (−n̂ × [HN ] − Y +[EN ]),
(17)

where

[EN ] = E+
N − E−

N , [HN ] = H+
N − H−

N

measures the jump in the field values across an interface; i.e., superscript “+” refers to
field values from the neighbor element while superscript “−” refers to field values local
to the element. To account for the possible differences in material properties between the
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two elements, we have the local impedance, Z±, and conductance, Y ±, as

Z± = 1

Y ± =
√

µ±
r

ε±
r

,

and the sums,

Z̄ = Z+ + Z−, Ȳ = Y + + Y −,

of the local impedance and conductance, respectively.
The special case of a perfectly conducting wall is handled in the above formulation by

defining a mirror state within the metallic scatterer as

n̂ × E+
N = −n̂ × E−

N , n̂ × H+
N = −n̂ × H−

N ,

and define the material parameters as Z+ = Z−.
Now returning to the semidiscrete scheme, Eq. (16), we have an elementwise expression

for the electric field components

N∑
j=0

(
Mε

i j

dE j

dt
− Si j × H j − Mi j SE

j

)
=
∑

l

Fil

(
n̂l × Z+

l [Hl] − n̂l × [El]

Z+
l + Z−

l

)
, (18)

and for the magnetic field components

N∑
j=0

(
Mµ

i j
dH j

dt
+ Si j × E j − Mi j SH

j

)
=
∑

l

Fil

(
n̂l × −n̂l × [Hl] − Y +

l [El]

Y +
l + Y −

l

)
. (19)

Here we have

Mε
i j = (Li (x), ε(x)L j (x))D, Mµ

i j = (Li (x), µ(x)L j (x))D,

as the material-scaled mass matrices and

Mi j = (Li (x), L j (x))D, Si j = (Sx
i j , Sy

i j , Sz
i j

) = (Li (x), ∇Li (x))D (20)

represent the local mass and stiffness matrices. Note that in the special case where εr and
µr are elementwise constant, we recover (Mε, Mµ) = (εrM, µrM).

We have, furthermore, introduced the face-based mass matrices

Fil = (Li (x), τ (x)Ll(x))δD,

where the second index is limited to the trace of the nodal set at the faces of D.
Expressing Eqs. (18) and (19) in fully explicit form yields

dEN

dt
= (Mε)−1S × HN + (Mε)−1MSE + (Mε)−1F

(
n̂ × Z+[HN ] − n̂ × [EN ]

Z+ + Z−

)∣∣∣∣
δD

,

(21)
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and

dHN

dt
= −(Mµ)−1S × EN + (Mµ)−1MSH − (Mµ)−1F

(
n̂ × n̂ × [HN ] + Y +[EN ]

Y + + y−

)∣∣∣∣
δD

.

(22)

The mass matrices, M and Mε,µ, can be computed exactly as described in the Appendix
and inverted straightforwardly. We also need to initialize

(Mε,µ)−1S = (Mε,µ)−1[Sx , Sy, Sz]T,

which represents the general curvilinear gradient operator matrix, as well as (Mε,µ)−1M
for the source terms. It is worth noting that for all straightfaced tetrahedra with constant
material parameters, the entries of S can be formed directly from template matrices, defined
for the standard element, by simple linear combinations. The same holds true for the face-
based operators M−1F, which likewise can be precomputed for all straightfaced elements
with constant materials by linear scaling from standard template operators. An individual
initialization is only required for general curved elements and elements with smoothly
varying material parameters.

4.2. Consistency

To set the stage for the analysis of the scheme, let us introduce the exact solution,
q = [E, H], to Maxwell’s equations, Eq. (3), as well as its projection,PN q = [PN E,PN H]T,
on the space spanned by n-order polynomials, i.e., PN q ∈ P3

n . Except in very special cases
PN q will generally be different from the numerical solution, qN = [EN , HN ]T, which is the
exact solution to the discrete problem, Eqs. (21)–(22).

In the following we shall assume that PN represents the L2-projection, although in
practice it is in fact an interpolation operator. A subtle difference between these two repre-
sentations is the possibility of a discrete aliasing error through the interpolation of the initial
conditions. One could avoid this by reading the nodal values of the Galerkin projection of
the initial conditions, computed by using a quadrature of sufficiently high order. However,
if the initial conditions are smooth and well resolved, this discrete aliasing error can be
assumed to be small. We shall not explicitly distinguish between these two representations
in what remains.

A central result throughout shall be:

LEMMA 4.1. Assume that u ∈ Hp(D),p ≥ 0. Then there exists a constant, C, dependent
on p and the angle condition of D, but independent of u, h = diam(D), and n, such that

‖u − PN u‖Hq (D) ≤ C
hσ−q

n p−2q
‖u‖Hp(D),

where σ = min(p, n + 1) and 0 ≤ q ≤ σ .

Here we have introduced the standard Sobolev norm

‖u‖2
H p(D) =

∑
|α|≤p

∥∥∥∥ ∂α1

∂xα1

∂α2

∂xα2

∂α3

∂xα3
u

∥∥∥∥
2

D

,
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with the multi-index, α = (α1, α2, α3) and the associated space of functions, H p(D), for
which ‖u‖H p(D) is bounded. The result follows directly by combining classical results
from polynomial approximation with results from finite element analysis for h-refinement
[24, 25, 33, 34].

It is worth noting that Lemma 4.1 can possibly be improved at most
√

p as that result is
sharp for the one-dimensional case [25]. Furthermore, by using a projection different from
L2 one can improve further on the bound [24]. We shall, however, focus on estimates using
L2-projections for simplicity and not revisit this detail again.

Lemma 4.1 suffices to ensure consistency of the spatial discretization in Eqs. (18) and
(19) provided only that the exact solution is sufficently smooth. Furthermore, for ana-
lytic fields one can expect exponentially vanishing truncation errors and, thus, errors,
provided the scheme is stable. This, however, is an issue that requires more of a careful
discussion.

4.3. Stability

Let us attend to the issue of semidiscrete stability and define the local energy

Ek = 1

2

∫
Dk

(µ|HN |2 + ε|EN |2) dx,

and the associated global energy, E =∑k Ek .

LEMMA 4.2 (TWO-ELEMENT STABILITY). Assume that a solution to Maxwell’s equations
exists on a domain consisting of two elements sharing one face. Stability of the semidis-
crete approximation of Maxwell’s equations, Eqs. (21)–(22), on this domain is guaranteed
provided

τ = 1.

Proof. Consider Maxwell’s equations on the semidiscrete form, Eqs. (18)–(19). Multi-
ply from the left with (E j , H j ) and sum over all the nodes in D to obtain

1

2

d

dt
(E−

N , εE−
N )D = (E−

N , ∇ × H−
N )D + (E−

N , SE )D

+
∮

δD
τE−

N ·
(

n̂− × Z+[HN ] − n̂− × [EN ]

Z+ + Z−

)
dx,

and

1

2

d

dt
(H−

N , µH−
N )D = −(H−

N , ∇ × E−
N )D + (H−

N , SH )D

−
∮

δD
τH−

N ·
(

n̂− × Y +[EN ] + n̂− × [HN ]

Y + + Y −

)
dx.

Addition of the two contributions, and application of the divergence theorem and standard
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vector identities yields

d

dt
Ek =

∮
δD

(1 − τ)n̂− · (H−
N × E−

N ) + τ

(
Y +

Ȳ
E−

N · (n̂− × H+
N ) − Z+

Z̄
H−

N · (n̂− × E+
N )

)

− τ

(
1

Z̄
E−

N · (n̂− × (n̂− × [EN ])) + 1

Ȳ
H−

N · (n̂− × (n̂− × [HN ]))

)
dx

+ (E−
N , SE )D + (H−

N , SH )D.

To understand the stability of a common edge, it suffices to consider the case where SE =
SH = 0. Adding the contribution from two edges, utilizing that n̂− = −n̂+, yields

d

dt
E =

∮
δD

(1 − τ)(n̂− · H−
N × E−

N − n̂− · H+
N × E+

N )

+ τ

Z̄
[EN ] · n̂− × n̂− × [EN ] + τ

Ȳ
[HN ] · n̂− × n̂− × [HN ] dx

= −
∮

δD
(1 − τ)n̂− · (H+

N × E+
N − H−

N × E−
N )

− τ

Z̄
|n̂− × [EN ]|2 − τ

Ȳ
|n̂− × [HN ]|2 dx.

A sufficient condition for E to remain bounded is

(1 − τ)((H−
N )TRE−

N − (H+
N )TRE+

N ) + τ

Z̄
[EN ]TRTR[EN ] + τ

Ȳ
[HN ]TRTR[HN ] ≥ 0,

(23)

where we have introduced the rotation matrix

R = R(n̂) =


 0 −nz ny

nz 0 −nx

−ny nx 0


.

Inspection reveals that by defining q = [E+
N , E−

N , H+
N , H−

N ]T, Eq. (23) may be expressed as
a symmetric quadratic form; i.e., it suffices to choose τ such that all eigenvalues of A are
nonnegative. Leaving out the lengthy and purely algebraic manipulations, we consider the
resulting two sets of eigenvalues of A given as

λ1,2 = 0, λ3,4 = τ

Z̄
± 1

2Z̄

√
4τ 2 + Z̄(τ − 1)2,

and

λ5,6 = τ

Ȳ
± 1

2Ȳ

√
4τ 2 + Ȳ (τ − 1)2.

Clearly, the choice of τ = 1 is the only feasible solution that ensures stability of the upwind
scheme used to connect the elements.

The special case of an element being terminated by a metallic conductor is treated by
using the conditions

n̂ × E−
N = −n̂ × E+

N , n̂ × H−
N = n̂ × H+

N ,

and Z+ = Z− = Z , Y + = Y − = Y .



200 HESTHAVEN AND WARBURTON

Following the same procedure as above yields the constraint

(1 − τ)HT
N RE + τ

2Z
ET

N RTREN ≥ 0.

Computing the eigenvalues of the corresponding quadratic form yields two pairs of the form

λ1 = 0, λ2,3 = τ

Z
± 1

Z

√
τ 2 + Z2(τ − 1)2.

The only way to guarantee possitivity of the eigenvalues and hence the quadratic form is to
choose τ = 1. �

With these results in place, we can now state:

THEOREM 4.1 (STABILITY). Assume that a unique solution to Maxwell’s equations exists
in the general domain, �. Assume furthermore that the boundary of � is either periodic or
terminated with a perfectly conducting boundary.

Then the semidiscrete approximation to Maxwell’s equations, Eqs. (21)–(22), is globally
stable in the sense that

d

dt
E ≤ C

(
E + ‖SE‖2

� + ‖SH‖2
�

)
,

provided only that

τ = 1.

Moreover, if SE = SH = 0, then C ≤ 0.

Proof. As each face is counted only once, the result follows directly by summation over
all the faces and the application of Lemma 4.2

d

dt
E ≤

∑
k

(EN , SE )Dk + (HN , SH )Dk

≤ C
(

E + ‖SE‖2
� + ‖SH‖2

�

)
,

using that (EN , SE )D ≤ C(‖EN ‖2
D + ‖SE‖2

D), ‖EN ‖2
D ≤ C(EN , εr EN )D since ε ≥ 1. A sim-

ilar line of reasoning is applicable for (HN , SH )D and the result on global stability
follows. �

4.4. Convergence

With consistency and stability in equivalent norms, convergence follows directly from
the equivalence theorem with a bound on the local error

εD(t) = ‖E(t) − EN (t)‖D + ‖H(t) − HN (t)‖D,

of the form

εD(t) ≤ Ceαt

(
εD(0) +

∫ t

0
‖Tq(s)‖D ds

)
,
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and global convergence is hence established up to exponential growth in time as is typical
for Lax-type stability results.

As it turns out, however, we can do better and recover a sharp bound for the growth in
time by generalizing ideas recently introduced in the context of finite difference methods
[35, 36]. To realize this, let us make the natural split of the elementwise error as

εD ≤ (‖E − PN E‖D + ‖H − PN H‖D) + (‖PN E − EN ‖D + ‖PN H − HN ‖D)

= εa
D + εb

D,

where εa
D represents the error introduced by the polynomial approximation of the exact

solution while εb
D measures the error associated with the semidiscrete approximation of

Maxwell’s equations.
To bound εa

D we need only recall Lemma 4.1 to state:

LEMMA 4.3. Assume that q = [E, H]T ∈ Hp(D), p ≥ 0. Then there exists a constant,
C, dependent on p and the angle condition of D, but independent of q, h = diam(D), and n,
such that

‖q − PN q‖D ≤ C
hσ

n p
‖q‖H p (D),

where σ = min(p, n + 1).

To arrive at a bound for εb
D, let us first consider the projection of the truncation error,

PN Tq = [PN TE ,PN TH ]T, on the form

(Li ,PN TE )D = (Li ,PN ∇ × H − PN ∇ × PN H)D

− 1

Z̄
(Li , n̂ × (Z+[PN H] − n̂ × [PN E]))δD, (24)

(Li ,PN TH )D = −(Li ,PN ∇ × E − PN ∇ × PN E)D

− 1

Ȳ
(Li , n̂ × (−Y +[PN E] − n̂ × [PN H]))δD. (25)

This is derived by introducing PN q into the semidiscrete scheme, Eqs. (18)–(19), and use
that q satisfies Maxwell’s equations, Eq. (3).

The projection of the truncation error can be bounded by the exact solution as:

LEMMA 4.4. Assume that q = [E, H]T ∈ H p(D),p ≥ 2. Then there exists a constant,
C, dependent on p, the angle condition of D, and the local material properties, εr,µr, but
independent of q,h = diam(D), and n, such that

‖PN Tq‖D ≤ C
hσ−1

n p−2
‖q‖H p(D),

where σ = min(p, n + 1).

Proof. We need only establish the result for PN TE , Eq. (24), as the result for PN TH

follows from identical arguments.
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As PN TE ∈ P3
n =∑ j TE

j L j (x) we can multiply from the left with TE
j and sum over all

the nodes to recover

‖PN TE‖2
D = (PN TE ,PN ∇ × (H − PN H))D

− 1

Z̄
(PN TE , n̂ × (Z+[PN H] − n̂ × [PN E]))δD.

Using the Cauchy–Schwarz inequality and the estimate [25]

‖qN ‖δD ≤ C
n

h1/2
‖qN ‖D,

for all qN ∈ P3
n(D), h = diam(D), we recover

‖PN TE‖D ≤ C1‖PN ∇ × (H − PN H)‖D + C2
n

h1/2

1

Z̄
‖Z+[PN Hτ ] − [PN Eτ ]‖δD, (26)

where we for simplicity have introduced the tangential components

Eτ = n̂ × E, Hτ = n̂ × H.

To bound the first term we use Lemma 4.1 to obtain

‖PN ∇ × (H − PN H)‖D ≤ ‖∇ × (H − PN H)‖D ≤ C
hσ−1

n p−2
‖H‖H p(D). (27)

Consider now terms of the type

‖[PN Eτ ]‖δD ≤ ‖PN E+
τ − E+

τ ‖δD + ‖PN E−
τ − E−

τ ‖δD,

where E+
τ = E−

τ = Eτ represents the exact solution at δD. Recalling the trace inequality
[37]

‖q‖2
δD ≤ C

(‖q‖D‖∇q‖D + h−1‖q‖2
D

)
, q ∈ H 1(D),

implies that

‖q − PN q‖2
δD ≤ C

(‖q − PN q‖D‖q − PN q‖H 1(D) + h−1‖q − PN q‖2
D

)
,

and we recover by combination with Lemma 4.1 the bound

‖[PN Eτ ]‖δD ≤ C
hσ−1/2

n p−1
‖E‖H p(D).

Combining this with Eqs. (26) and (27) one obtains the result

‖PN TE‖D ≤ C1
hσ−1

n p−2
‖H‖H p(D) + C2

hσ−1

n p−2

(‖E‖H p(D) + ‖H‖H p(D)

)
,
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where (C1, C2) are independent of h and n but C2 depends on the local material properties
(Z±, Y ±). �

Let us now return to the original quest for an improved convergence estimate and consider
the error equation

(
Li , ε

∂

∂t
(PN E − EN )

)
D

= (Li ,PN ∇ × (PN E − EN ))D + 1

Z̄
(Li , n̂ × (Z+[PN H − HN ]

− n̂ × [PN E − EN ]))δD + (Li ,PN TE )D, (28)

for the electric field and similarly for the magnetic field

(
Li , µ

∂

∂t
(PN H − HN )

)
D

=−(Li ,PN ∇ × (PN H − HN ))D − 1

Ȳ
(Li , n̂ × (Y +[PN E − EN ]

+ n̂ × [PN H − HN ]))δD + (Li ,PN TH )D. (29)

The combination of these expressions with Lemma 4.4 and the methodology of the stability
proof in Section 4.3 yields the improved convergence result

THEOREM 4.2. Assume that a solution, q ∈ H p(D),p ≥ 2 to Maxwell’s equations in
� = ⋃k Dk exists. Then the numerical solution, qN , to the semidiscrete approximation,
Eqs. (21)–(22), converges to the exact solution, and the global error,

∑
k ‖q − qN ‖Dk , is

bounded as

∑
k

‖q(t) − qN (t)‖Dk ≤ C
∑

k

(
‖q(t) − PN q(t)‖Dk

+ ‖PN q(0) − qN (0)‖Dk + t max
s∈[0,t]

‖Tq(s)‖Dk

)

≤ C
∑

k

(
hσ

n p
‖q(0)‖H p(Dk ) + t

hσ−1

n p−2
max
s∈[0,t]

‖q(s)‖H p(Dk )

)
,

where C depends on the material properties and the angle condition of the elements but not
on h and n.

Proof. Since PN E − EN ∈ P3
n and PN H − HN ∈ P3

n we can use these as elementwise
test functions in Eq. (28) and Eq. (29), respectively, and add these to obtain

1

2

d

dt
((PN E − EN , ε(PN E − EN ))D + (PN H − HN , ε(PN H − HN ))D)

=
∮

δD

(
n̂ · (PN H − HN ) × (PN E − EN ) + 1

Z̄
(PN E − EN ) · n̂ × (Z+[PN H − HN ]

− n̂ × [PN E − EN ]) − 1

Ȳ
(PN H − HN ) · n̂ × (Y +[PN E − EN ]

+ n̂ × [PN H − HN ])

)
dx + (PN E − EN , TE )D + (PN H − HN , TH )D,
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where we have employed integration by parts once. Following the approach of Lemma 4.2
we sum over all the faces to obtain

1

2

d

dt

∑
k

((PN E − EN , ε(PN E − EN ))Dk + (PN H − HN , ε(PN H − HN ))Dk )

≤ −
∑

k

[‖[PN E − EN ]‖2
Dk + ‖[PN H − HN ]‖2

Dk

]

+
∑

k

[
(PN E − EN ,PN TE )Dk + (PN H − HN ,PN TH )Dk

]
.

Note that since ε and µ are uniformly bounded away from zero the material-weighted
energy norm is L2-equivalent. Furthermore, the term associated with the jump at the element
interfaces is strictly negative and we recover the bound on the error

1

2

d

dt

∑
k

‖PN q − qN ‖2
Dk ≤ C

∑
k

(PN q − qN ,PN Tq)Dk ,

which, by using the Cauchy–Schwarz inequality and integration in time, yields the result

∑
k

‖PN q(t) − qN (t)‖Dk ≤ C
∑

k

(
‖PN q(0) − qN (0)‖Dk + t max

s∈[0,t]
‖PN Tq(s)‖Dk

)
.

Now combining this with Lemma 4.3 and Lemma 4.4 establishes the result and proves
convergence on weak assumptions of local, elementwise smoothness of the solution. �

We have hence established the semidiscrete result that the error cannot grow faster than
linearly in time and that we can control the growth rate by increasing the resolution provided
the solution is sufficiently regular. As we shall verify in Section 5 this linear growth is a
sharp result.

Prior to that, a few comments are in place. A rigorous generalization of the results obtained
above to include situations with general curvilinear elements and/or spatial variation of
the materials within each element is not straightforward. This is due to the generation of
higher-order polynomials from the products of the individual polynomial expressions of the
fields, the materials, and the geometry. One can, however, gain an intuitive understanding
of how the geometry and the material variations may impact the accuracy by assuming
that the polynomial representations are not of the fields only but rather of the combined
functions,

√
J (

√
εr E,

√
µr H). In this setting, we are working only with n-order polynomial

expansions and one can expect that the overall picture from the results derived above will
hold also for these new functions. Hence, where we originally had an nth order polynomial
to represent the fields, (E, H), we are now left with an nth order polynomial to represent the
combined variation. One consequence of this is that we loose accuracy when considering
only the fields as we essentially must share the resolution power between the fields, the
geometry, and the material variation. In particular, if the element is strongly distorted, i.e.,
J varies significantly, one can expect loss of accuracy as compared to the straightsided
approximation. Provided, however, that the geometry is smooth, i.e., J nonsingular, and the
local material variation is smooth, spectral convergence is preserved.
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4.5. Convergence of Divergence Error

In the absence of sources, it is well known that the electric and the magnetic fields must
remain solenoidal throughout the computation. An assumption to this effect was indeed
imposed by choosing to only solve the time-dependent part of Maxwell’s equations, Eq. (3),
and leaving the divergence conditions as consistency conditions on the initial conditions.
However, given that we cannot expect to recover the projection of the analytic solution
but rather will compute a different, albeit convergent, solution we need to consider the
divergence of this numerical solution to justify this.

Using the results of Section 4.4 we can state:

THEOREM 4.3. Assume that a solution, q ∈ H p(D),p ≥ 4 to Maxwell’s equations in
� = ⋃k Dk exists. Then there exists a constant, C , dependent on p and the angle con-
dition of Dk , but independent of q, h = diam(D), and n, such that the divergence of the
numerical solution, qN , to the semidiscrete approximation, Eqs. (21)–(22), is bounded as

∑
k

‖∇ · qN (t)‖Dk ≤ C
∑

k

(
hσ−1

n p−2
‖q(0)‖H p(Dk ) + t

hσ−2

n p−4
max
s∈[0,t]

‖q(s)‖H p(Dk )

)
,

where σ = min(p, n + 1).

Proof. The result follows directly from Theorem 4.2 and the inverse inequality [25]

‖∇ · uN ‖D ≤ n2

h
‖uN ‖D,

for all uN ∈ P3
n (D). �

As could be expected, the result inherits the temporal linear growth from the convergence
result and confirms the possibility of recovering spectral convergence of the divergence
under the assumption of sufficient smoothness of the solutions. It should be noted that
while the result confirms high-order accuracy and convergence, the estimate for the actual
convergence rate may well be suboptimal and certainly require more regularity than can be
guaranteed.

4.6. Entr’acte on the Scattered Field Formulation

Let us briefly return to an analysis of the scattered field formulation discussed in
Section 2.1, with the modified scattered field equations given in Eqs. (6) and (7). We recall
that we split the solution, q, as

q = qs + qi,

and exploit the linearity of Maxwell’s equations to solve for the scattered field, qs, subject
to the forcing by the incident field, qi. As discussed in Section 2.1, this does not alter the
scheme in any significant way except at metallic boundaries where the boundary condition
on the electric field component takes the form

n × Es,+
N = −n × Es,−

N − 2PN Ei,
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in the notation of Lemma 4.2, while the boundary condition on the magnetic field remains

n × Hs,+
N = n × Hs,−

N .

Since this constitutes the only difference, we can restrict the subsequent analysis to the
case of a metallic object in vacuum without loss of generality as all other complications are
covered by the analysis of the total field scheme.

THEOREM 4.4. Assume that a scattered field solution, qs ∈ H p(D),p ≥ 2 to Maxwell’s
equations in � = ⋃k Dk exists, and that the incident field qi ∈ H p(D),p ≥ 2. Then the
energy of the numerical scattered field solution, qs

N , to the semidiscrete approximation of
Eqs. (6) and (7) is bounded as

∑
k

∥∥qs
N (t)

∥∥
Dk ≤ C

∑
k

(
‖PN qi(t)‖Dk + ∥∥PN qi(0) + qs

N (0)
∥∥

Dk + t max
s∈[0,t]

∥∥Tqi
(s)
∥∥

Dk

)
,

where C depends on the material properties and the angle conditions of the elements but
not on h and n.

Proof. The proof proceeds in a way very similar to that of Theorem 4.2 and is left
out. �

Hence, also the scattered fields remain bounded up to linear growth in time. An interesting
difference between this result on that of Theorem 4.2 for the total field formulation is that the
accuracy and growth rate of the former is controlled solely by the smoothness of the incident
field with the potential for exponential convergence for sufficiently smooth illuminating
fields.

5. VALIDATION AND PERFORMANCE OF THE SCHEME

Having developed the formulation for the time-domain solution of Maxwell equations
it is now time to consider the actual performance of the computational framework. Unless
stated otherwise, all computational are done in the scattered fields formulation.

In the following we shall discuss the validity of the main theoretical results through a few
examples as well as exemplify the versatility and overall accuracy and performance of the
complete framework for a number of benchmarks. Temporal integration of the semidiscrete
approximation given in Eqs. (18) and (19) is done using a fourth-order, five-stage low-
storage Runge–Kutta scheme [38] and a stability-limited time-step scaling as

�t ≤ CFL min
�

√
εrµr|χ |−1,

with
√

εrµr reflecting the modified local speed of light due to materials and

χ = |∇ξ |
�ξ

+ |∇η|
�η

+ |∇ζ |
�ζ

.

Here | · | refers to the absolute value of each and of the vector components, i.e., |∇ξ | =
[|ξx |, |ξy |, |ξz|]T. Hence, χ provides a measure of the local grid distortion as a consequence
of the mapping, �, of I into D, and (�ξ, �η, �ζ ) measures the axial distance separating
neighboring nodal points in I. In this setting CFL typically takes values of O(1) while the
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time step, �t , scales as �t � l/n2, where l is the minimum edge length on all tetrahedra
and n is the polynomial order of the approximation.

As a general measure of error we shall use the discrete L p-norm of the error defined as

‖δ f (t)‖p =
(∑

j,k

[
fN
(
xk

j , t
)− f

(
xk

j , t
)]p

)1/p

,

where fN (x, t) is the numerical approximation to the exact value, f (x, t), summed over all
nodes, j , within each of the k elements.

5.1. Elementary Tests and Verification of Theoretical Results

As a first verification of the theoretical estimates, and in particular the linear growth
predicted in Theorem 4.2, we consider the solution of the two-dimensional Maxwell’s
equations in the TM-polarization; i.e., we solve for (Hx , Hy, Ez). There is, however, nothing
special about this polarization.

The computational problem is that of a simple two-dimensional vacuum-filled cavity,
assumed to be defined by (x, y) ∈ [−1, 1] × [−0.25, 0.25], with the walls at x = ±1 taken
to be perfect electrical conductors while the cavity is assumed to be periodic in the y-
direction. The initial condition is a simple oscillatory cavity solution as

Hx (x, y, 0) = 0, Hy(x, y, 0) = cos(πx), Ez(x, y, 0) = 0,

and the computational domain is discretized by eight equivalent isosceles, each with 0.5
wavelength long sides.

In Fig. 2 we show the temporal envelope of the maximum error of Hy(t), computed using
the same eight elements while increasing the order of the approximation. Following the
main result, Theorem 4.2, we expect that the error can grow at most linearly in time and that
the growth rate should vanish spectrally for a smooth solution. The results in Fig. 2 not only
confirm the validity of both statements but also illustrate that Theorem 4.2 is sharp; i.e., we

FIG. 2. In (a) is shown the temporal envelope of the maximum error on Hy(t) in the two-dimensional cavity
for different orders, n, of the approximation. The slope of the linear growth is plotted in (b), confirming spectral
convergence as predicted in Theorem 4.2.
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FIG. 3. In (a) we illustrate the prism tiled using three high-order tetrahedra while (b) illustrates the maximum
of Hx for a (y, z)-polarized plane wave propagation as a function of time and order of the approximation, n,
confirming spectral convergence for the three-dimensional case.

cannot in general guarantee slower than linear error growth, although we can control the
growth rate by the order of the approximation.

The ability to propagate waves over very long distances is likewise confirmed in Fig. 2.
Using as guideline that two edges span a wavelength, we see that with 7 points per wave-
length (two n = 3 triangles) yields O(1) error after 500 periods. Only 9 points per wave-
length (two n = 4 triangles) results in about 1% error while 11 points per wavelength (two
n = 5 triangles) ensures about 0.1% error after 500 periods. This is a testament to the
advantage of using a high-order framework for wave propagation problems.

Let us also consider a simple three-dimensional test case in which we have tiled a straight-
faced prism using three straightfaced tetrahedra as illustrated in Fig. 3. The test is that of a
plane wave propagating through the prism with the exact solution being used as the bound-
ary conditions. As shown in Fig. 3 we recover a rapid exponential convergence as the order,
n, of the approximation is increased.

5.2. Two-Dimensional Examples

Having verified the performance of the basic computational setup as well as the theoretical
estimates, let us now consider problems of a less simple character. This shall not only allow
us to illustrate more general features of the proposed framework but shall also be used
to verify that all the properties of the high-order unstructured grid formulation, seen so
convincingly in the last section for simple examples, carry over to the solution of more
realistic problems.

We shall focus attention on problems described by the two-dimensional TM-polarized
Maxwell’s equations in the form

µr
∂ Hx

∂t
= −∂ Ez

∂y
,

µr
∂ Hy

∂t
= ∂ Ez

∂x
, (30)

εr
∂ Ez

∂t
= ∂ Hy

∂x
− ∂ Hx

∂y
,
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subject to boundary conditions between two regions with material parameters, ε(k)
r and µ(k)

r ,
for k = 1, 2, as

n̂ × H(1) = n̂ × H(2),

E (1)
z = E (2)

z .

Here H(k) = (H (k)
x , H (k)

y , 0)T, and n̂ = (n̂x , n̂ y, 0)T represents a unit vector normal to the
interface. For the case of a perfectly conducting metallic boundary the condition becomes
particularly simple as

Ez = 0.

The computational domain is truncated with a Cartesian PML [39] using a quadratic ab-
sorption profile.

It is worthwhile emphasizing that results of equal quality and accuracy as those shown
in the following for the TM-polarized case have been obtained for the TE-polarized case.

As a first example we consider that of plane wave scattering by a perfectly conducting
circular cylinder with a radius of a = 7.5λ, i.e., ka = 15π . The surrounding medium is
assumed to be vacuum, i.e., εr = µr = 1. The finite element grid, consisting of 854 triangles,
used for this computation is shown in Fig. 4 along with a section of the grid illustrating the
body-conforming nature of the approximation as well as the nodal grid supporting the high-
order approximation. Prony extrapolation [40] is used to reduce the required computing
time to reach the harmonic steady state.

In Fig. 5 we compare the computed bistatic radar cross section, RCS(θ ), with the exact
series solution [41], for various orders, n, of the approximation using the finite element grid
in Fig. 4. As expected we observe a very rapid convergence with increasing n, yielding a
reasonable engineering accuracy computation with the fourth-order scheme while increas-
ing the order to n = 8 results in a perfect match. A quantitative confirmation of this is also
shown in Fig. 5, illustrating exponential convergence of the RCS with increasing n.

FIG. 4. In (a) is shown the finite element grid, consisting of 854 triangles, used for computing scattering
by a perfect electrically conducting cylinder of size ka = 15π . A section of the grid in (b) illustrates the body-
conforming nature of the grid and the nodal grid supporting the high-order approximation.
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FIG. 5. In (a) is shown the bistatic radar cross section, RCS(θ ), as computed using the exact series representa-
tion as well as the unstructured grid method at different polynomial orders, n. Evidence of high-order convergence
for the RCS computation is given in (b), showing exponential decay of the error in RCS (dBm) with increasing
order of the approximation.

One of the most appealing advantages of a high-order framework on simplices is the
ability to import a strongly skewed and/or coarse finite element grid and recover a fully
converged solution by increasing the order of the approximation rather than having to re-
construct an improved finite element discretization. This property is particularly important
and useful for large three-dimensional problems where the grid generation phase often is
complex and time consuming. As an illustration of this approach to convergence, we con-
sider in Fig. 6 plane wave scattering by a PEC cylinder with a radius of one wavelength,
i.e., ka = 2π . A measure of accuracy is based on the observation that the symmetry of
the problem makes one expect the scattered fields themselves to maintain a high degree of
symmetry.

This is indeed confirmed in Fig. 6 where we show a deliberately chosen coarse and skewed
grid and the rapid recovery of the symmetry of one of the scattered field components, Hx ,
as the order, n, of the approximation is increased without modifying the underlying finite
element grid. The detail to which the symmetry is restored is particularly noteworthy.

As an illustration of the capability to handle materials let us consider plane wave scattering
by a penetrable circular cylinder with a radius of a = 3.5λ consisting of an ideal dielectric
with εr = 2.0, i.e., similar to that of glass. The problem is again solved in a pure scattered
field formulation. The fully body-conforming finite element discretization, consisting of
a total of 1020 triangles, is illustrated in Fig. 7. We note that the absorbing PML layer,
containing about 2

3 of the total amount of triangles, is unnecessarily thick for illustration
only and can be decreased without loss of accuracy.

As is likewise illustrated in Fig. 7 we recover the full bistatic radar cross section, RCS(θ ),
with excellent correspondence to the exact solution [42] and quantitative agreement over a
40-db dynamic range.

5.3. Three-Dimensional Examples

As a first verification of the general three-dimensional framework, let us consider plane
wave scattering by a ka = 10 perfectly conducting sphere, the analytic solution of which
is given by a Mie series [41].
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FIG. 6. An example of convergence by increasing the order of the approximation, n, on a deliberately chosen
skewed finite element grid, illustrated in (a). The convergence is illustrated in (b)–(f) when increasing the order
from fourth order to 12th order, showing a complete recovery of the expected symmetry of the scattered field
component, Hx .

We use a fully bodyconforming grid with a total of 3000 elements, having an average
edge length at the sphere of 4λ/5. In contrast to the two-dimensional case where we used
a PML to truncate the computational domain we choose in the three-dimensional case
to embed the sphere in a (20λ)3 cube and employ stretching of the elements toward the
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FIG. 7. Plane wave scattering by a ka = 7π dielectric circular cylinder with a relative permittivity εr = 2.0.
In (a) we show the finite element discretization while (b) shows a comparison between the computed bistatic
radar cross section, RCS(θ ), obtained with a 10th order approximation and that recovered by evaluating the exact
solution.

outer boundary. The grid is stretched such that the average edge is about 2λ at the outer
boundary. As in the two-dimensional case, all examples are done using a fourth-order low-
storage Runge–Kutta scheme to advance in time and Prony extrapolation to identify the
solution.

In Fig. 8 we illustrate the convergence of the scheme with a fixed grid when increasing
the order of the approximation within each tetrahedron. Even for n = 3, i.e., a third-order
scheme with about 5 points per wavelength, we compute a reasonable solution while in-
creasing the order yields a rapidly converging solution as one would expect.

As a considerably more challenging problem, let us consider scattering by a perfectly
conducting business card-sized metallic plate as illustrated in Fig. 9. The horizontally
polarized plane wave impinges at the metallic plate at an almost grazing angle, causing the
excitation of strong waves along the edges of the metallic plate as well as along the length
of the plate. These waves contribute significantly to the scattering process and need to be
resolved to accurately predict the far-field scattering.

FIG. 8. Plane wave scattering by a ka = 10 metallic sphere for a fixed grid and increasing order, n, of the
polynomial approximation. In (a) we show the convergence of RCS(θ, 0) for vertical polarization (TM), while (b)
shows RCS(θ, 90) for horizontal polarization (TE) of the incident field.
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FIG. 9. In (a) we show the geometry for the plane wave scattering by a metallic business card while (b) shows
the comparison between monostatic RCS experimental results [43] (full line) for horizontal polarization of the
illuminating field and computed data points (·).

This problem, being one of the EMCC benchmark problems [43] for code validation,
is addressed by using a total of 27,000 straightsided tetrahedra, each supporting a fourth-
order polynomial approximation. The average edge length at the edge of the business card
is approximately λ/5. The metallic plate is embedded in a (20λ)3 cube, with the elements
being stretched to about 4λ at the outer boundary.

In Fig. 9 we also show the comparison between the experimentally measured monostatic
RCS [43] and a number of computed data points. Again we observe good agreement over the
full azimuthal range with results well within the experimental error. We note in particular
the good agreement in the backscatter region where the scattering is dominated by traveling
waves.

As a final example we consider plane wave scattering by a dielectric cylinder of finite
length. As illustrated in Fig. 10, the length of the cylinder is 5λ and the nonmagnetic
material has a permittivity of εr = 2.25, similar to that of glass. The nature of the fields

FIG. 10. In (a) we show the geometry for the plane wave scattering by a dielectric finite length cylinder
while (b) shows the RCS (θ, 0) for vertical polarization (·) of the illuminating field and RCS (θ, 90) for horizontal
polarization (·) compared with results obtained using a pseudospectral axisymmetric code (full line) [12].
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is less dramatic than in the previous case, and we find that using a total of approximately
67,000 elements, supporting a fourth-order approximation and with an average vacuum
edge length at the cylinder of λ/3, suffices to accurately predict the far-field scattering. The
full computational domain is a cylinder of radius 16λ and length 23λ with the stretched
elements having a average length of 4λ at the outer boundary.

In Fig. 10 we show a direct comparison between the full bistatic RCS for a plane wave
impinging directly at the end of the cylinder as computed using the current framework
and an independently verified pseudospectral multidomain axisymmetric code [12]. As
expected we find an almost perfect agreement between the results of the two schemes over
approximately a 50-dB dynamic range.

5.4. Parallel Performance

The discontinuous element formulation of the scheme enables a highly efficient im-
plementation at contemporary large-scale distributed memory machines. While this is a
lesser concern for two-dimensional problems, it is essential for enabling the modeling of
large-scale three-dimensional problems.

The scheme is implemented in C with all computationally intensive parts based exten-
sively on Level 3 BLAS [44]. The parallel interface is written in MPI [45] with METIS
[46] to distribute the elements over the processors. To ensure high cache efficiency, we
employ bandwidth minimization [47] of the nodal points locally to the processors [48]. For
computations maximizing the capacity of the processors, i.e., filling the local memory, this
is critical to ensure high performance.

In Table I we list the parallel speedup relative to the n = 2 case as the number of pro-
cessors are increased. A few things are worth noting. For a fixed size problem, the parallel
speedup decreases slightly as the number of processors increases as is natural since the
relative communication cost increases. On the other hand, for problem sizes utilizing the
available resources we find a high parallel efficiency; e.g., increasing the problem size and
the number of processors yields a close to constant speedup. The data also shows a minor
decrease in relative performance for high order on many processors, which we speculate is
related to cache effects known to be become important as the size of the operators increase
[29]. We generally observe better than 90% parallel efficiency, consistent with other similar
studies [49].

TABLE I

Parallel Speedup for a 123.000 Element Grid, Scaled to Timing

for n = 2 on 4 Processors

Number of processors
Polynomial Degrees of

order (n) freedom (×106) 4 8 16 32 64

2 7.4 1.0 2.0 3.9 7.5 13.7
3 14.8 — 0.9 1.8 3.5 6.4
4 25.8 — — 1.0 1.9 3.6
5 41.3 — — — 0.8 1.6

Note.— Implies insufficient memory local to the nodes.
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6. CONCLUDING REMARKS AND OUTLOOK

The main purpose of this paper has been to introduce the reader to a new class of high-
order unstructured grid methods suitable for solving systems of linear conservation laws
with special attention paid to the time-domain solution of Maxwell’s equations. A number
of central elements separate the current framework from previous attempts to develop high-
order accurate methods on unstructured tetrahedral grids. The use of a purely nodal basis
has a number of advantages in terms of ease of implementation by simple matrix–vector
operations as well as the promise to yield a highly efficient implementation. Furthermore, the
generalized discontinuous penalty scheme was introduced, offering an inherently parallel
discontinuous formulation with a purely block-diagonal mass matrix that can be inverted
during preprocessing.

The particular focus on Maxwell’s equations allowed us to develop a complete, if not
optimal, convergence theory. A similar analysis can be completed for other classes of linear
problems such as acoustics and linear elasticity. We have confirmed the results of the
analysis by thorough computational experiments, illustrating the flexibility, versatility, and
efficiency of the proposed high-order accurate unstructured grid framework.

While we have focused on linear conservation laws, the central elements of the framework
allow for more general formulations that enable the solution of typical systems of nonlinear
conservation laws. This naturally raises questions about proper formulation of the fluxes at
interfaces, conservation, and stability of high-order schemes when approximating problems
with discontinuous solutions. We shall address these issues in [30] where we shall also
demonstrate the performance of such generalized formulations for the solution of nonlinear
conservation laws.

APPENDIX: EFFICIENT AND ACCURATE IMPLEMENTATION TECHNIQUES

From the discussions in Section 3.2 it is clear that the Vandermonde matrix, V, plays a
crucial role when setting up the discrete operators for interpolation and differentiation. The
properties of V, e.g., its conditioning, depends exclusively on the structure of nodal set, ξ j ,
and on the way in which we choose to represent the basis, i.e., pi (ξ). While the former
is chosen to ensure well-behaved Lagrange interpolation polynomials, we have significant
freedom in the specification of pi (ξ).

A particularly simple choice is that of the multivariate monomial basis, i.e., pi (ξ) =
ξ iη jζ k . However, even for interpolation in one dimension, i.e., pi (ξ) = ξ i , it is well known
that this basis leads to the classical Vandermonde matrix, V, with an exponentially growing
condition number. Hence, even for moderate values of n we can expect severe problems
when attempting to compute the action of V−1. The well-known solution to this problem
is to choose a basis that is orthonormalized with respect to some proper inner product to
assure the maximum degree of linear independence of the basis.

Such a basis has been known for long [50–52] and takes the form

ψi jk(ξ) = P (0,0)
i (r)

(
1 − s

2

)i

P (2i+1,0)
j (s)

(
1 − t

2

)i+ j

P (2i+2 j+2,0)
k (t), (A.1)
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where

r = −2(1 + ξ)

η + ζ
− 1, s = 2(1 + η)

1 − ζ
− 1, t = ζ,

and P (α,β)
n (x) signifies the classical Jacobi polynomial of order n [53].

The tensor product structure of the basis, Eq. (A.1), becomes evident when one realizes
that while ξ is restricted by I, the mapped coordinates, (r, s, t), cover [−1, 1]3. Furthermore,
it is easy to see that the polynomial space, P3

n , is

P3
n = span{ψi jk(ξ); i, j, k ≥ 0; i + j + k ≤ n}.

An important property of the basis, Eq. (A.1), is its orthogonality on I [21] as

∫
I
ψi jk(ξ)ψpqr (ξ) dξ = γi jkδi jk,pqr,

where δi jk,pqr is the multidimensional Dirac delta and the normalization is

γi jk = 2

2i + 1

22i+2

2(i + j) + 2

22(i+ j)+3

2(i + j + k) + 3
.

Let us introduce the index, α ∈ [0, N ], reflecting some chosen ordering of (i, j, k) and hence
ψi jk . We can thus rename the polynomial basis ψi jk(ξ) = ψα(ξ) to simplify the notation.

Using the orthogonal basis, ψα , it is natural to define the Vandermonde matrix to have
the entries

Vi j = 1√
γ j

ψ j (ξi ).

The relation between the nodal and the modal representation of a function, f , follows directly
from Eq. (11) as

f = Vf̂ , f̂ = V−1f .

Furthermore, we can compute the entries of the stiffness matrices, Eq. (20), directly by
defining the entries using the derivatives of ψi (ξ) expressed by the identity [53]

d

dξ
P (α,0)

n (ξ) = 1

2
(n + 1 + α)P (α+1,1)

n−1 (ξ),

and that

∇L = (V−1)T∇ψ.

We also need to evaluate inner products on the general curvilinear tetrahedron; i.e., we need
an efficient and accurate procedure for computing

( fN , gN )D =
∫

I
fN (ξ)gN (ξ)J (ξ) dξ,
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where J refers to the transformation Jacobian for the mapping between D and I and fN ∈ P3
n ,

gN ∈ P3
n . To evaluate this inner product, we exploit that fN and gN are expressed uniquely

by their expansion in Lagrange polynomials as

( fN , gN )D =
N∑

i, j=0

fi g j

∫
I
Li (ξ)L j (ξ)J (ξ) dξ.

Furthermore, using the basis itself, ψα(ξ), we can express the Lagrange polynomials them-
selves using Eq. (13) on the form

Li (ξ) =
N∑

k=0

V−1
ik ψk(ξ).

This immediately yields the expression

( fN , gN )D =
N∑

i, j=0

fi g j

N∑
k,l=0

V−1
ki V−1

l j

∫
I
ψk(ξ)ψl(ξ)J (ξ) dξ

=
N∑

i, j=0

fi g j

N∑
k,l=0

V−1
ki V−1

l j Wkl , (A.2)

where the symmetric matrix of weights, W, has the entries

Wkl =
∫

I
ψk(ξ)ψl(ξ)J (ξ) dξ.

On matrix form Eq. (A.2) becomes

( fN , gN )D = (V−1f )TWV−1g.

For all elements we may precompute (V−1)TWV−1 in a preprocessing stage, storing only
the upper half of the operator due to symmetry. In the particularly important case where
D is a straightsided tetrahedron, i.e., J is a constant, the orthonormality of ψα implies that
W = J I, where I represents the identity matrix. Hence, through a simple linear scaling one
recovers the weights for all tetrahedra with planar faces. For the general case where J (ξ)

is nonconstant, the entries of W are computed exactly through overintegration by product
rules based on Legendre Gauss quadratures [54].

A final key operation needed for the implementation of the scheme is surface integration,
i.e.,

( fN , gN )δD =
∮

δI
fN (ξ)gN (ξ)J (ξ) dξ,

where J (ξ) refers to the surface Jacobian only. While one could proceed as for the volume
integral discussed above, it is more natural to exploit the uniqueness and completeness of
the Lagrange interpolation. To illustrate the procedure, let us restrict attention to one of the
faces, ζ = −1, and term those N f

n = 1
2 (n + 1)(n + 2) nodes positioned at that face for ξf.

Clearly, using the exact same procedure as for the three-dimensional Lagrange polynomial
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discussed above, we can compute a two-dimensional Lagrange polynomial, l f
j (ξ, η) based

on ξf. As for L j (ξ), we can recover l f
j as the solution to the dual problem

(Vf)Tlf = pf,

where the entries of the Vandermonde matrix are

Vf
i j = pf

j (ξ
f
i ).

The proper basis to use is the two-dimensional version of Eq. (A.1) given directly as
pf

j (ξ, η) = ψi j0(ξ, η, −1). This allows us to proceed exactly as for the volume integration
and express the integration over the face as

∫
face f

fN (ξ, η, −1)gN (ξ, η, −1)J (ξ, η, −1) dξ dη = ((Vf)−1f f)TW f(V f)−1g f,

where f f = [ fN (ξf
0), . . . , fN (ξf

N f
n
)]T is the trace of fN at the face. A similar definition is

used for g f. The matrix of surface weights are given as

Wf
i j =

∫
face f

ψi (ξ, η, −1)ψ j (ξ, η, −1)J (ξ, η, −1) dξ dη.

In the important special case where the face is planar and has straight edges, orthonormality
of the polynomials immediately implies that Wf = J fI as for the volume case. For the
general case we shall use a cubature rule [55–57] of sufficiently high order to evaluate the
inner product; i.e., we need to interpolate the polynomials, fN and gN , onto the M cubature
nodes, ξd,cub, situated at the face. This is done by the introduction of the interpolation
operator

H = P T(V f)−1, Pi j = pf
i

(
ξf,cub

j

);
i.e., P is an N f

n × M operator. The evaluation of the inner product is then accomplished as

∫
face f

fN (ξ, η, −1)gN (ξ, η, −1)J (ξ, η, −1) dξ dη = ( f f)THTWHg f,

where the entries of the diagonal M × M matrix of weights are given as

Wi i = wi

N f
n∑

k=0

Hik J
(
ξf

k

)
,

containing the weights wi of the cubature as well as the interpolation of the transformation
Jacobian of the curvilinear face. While this formulation leads to the most compact scheme
it proves advantageous to operate directly on the values at the cubature nodes as they
do not include the edges and vertices; i.e., we can establish a clean face-based connection
between elements without considering the multiplicity of solutions at vertices and the added
complexity this introduces for the implementation and performance.
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It is important to realize that all the operators introduced in the above can be initialized
during a preprocessing phase. Furthermore, it is worth recalling the discussion in Section 3.1
in which we found that any two straightfaced tetrahedra are connected through a linear
transformation. Hence, for any straightfaced D we can form any of the operators discussed
in the above directly by a linear scaling of hard-coded template operators defined on I.
This saves not only preprocessing time but also reduces the required storage space very
substantially.
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33. I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13,
214–226 (1976).

34. P. G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, The Netherlands, 1978).

35. A. Ditkowski, Bounded-Error Finite Difference Schemes for Initial Boundary Value Problems on Complex
Domains, Ph.D. thesis (Department of Applied Mathematics, School of Mathematical Sciences, Tel-Aviv
University, Tel-Aviv, Israel, 1997).

36. A. Ditkowski, K. Dridi, and J. S. Hesthaven, Convergent Cartesian grid methods for Maxwells equations in
complex geometries, J. Comput. Phys. 170, 39–80 (2001).

37. E. Suli, C. Schwab, and P. Houston, hp-DGFEM for partial differential equations with nonnegative characteris-
tic form, in Discontinuous Galerkin Methods. Theory, Computation and Applications, edited by B. Cockburn,
G. E. Karniadakis, and C. W. Shu, Lecture Notes in Computational Science and Engineering (Springer-Verlag,
Berlin, 2000), Vol. 11, pp. 221–230.

38. M. H. Carpenter and C. A. Kennedy, Fourth order 2N-storage Runge-Kutta scheme, NASA-TM-109112
(NASA Langley Research Center, VA, 1994).

39. S. Abarbanel and D. Gottlieb, On the construction and analysis of absorbing layers in CEM, Appl. Numer.
Math. 27, 331–340 (1998).



NODAL HIGH-ORDER METHODS ON UNSTRUCTURED GRIDS I 221

40. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House,
Boston, 1995).

41. J. J. Bowman, T. B. A. Senior, and P. L. Ushlenghi (Eds.), Electromagnetic and Acoustic Scattering by Simple
Shapes (North-Holland, Amsterdam, 1969).

42. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore,
1990).

43. J. L. Volakis, Benchmark plate radar targets for the validation of computational electromagnetics programs,
IEEE Ant. Prop. Mag. 34, 52–56 (1992).

44. J. Dongarra, J. Du Croz, I. Duff, and S. Hammerling, A set of level 3 basic linear algebra subprograms (BLAS),
available at http://www.netlib.org/blas/blas3-paper.ps.

45. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference (MIT Press,
Cambridge, MA, 1996).

46. G. Karypis and V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, J. Para. Distrib. Comput.
48, 96–129 (1998).

47. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (2000), available at http://www-
users.cs.umn.edu/∼saad/books.html.

48. C. C. Douglas, G. Haase, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss, Portable memory hierarchy techniques
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